<strike id="zl1ld"></strike>
<span id="zl1ld"><video id="zl1ld"></video></span>
<strike id="zl1ld"><dl id="zl1ld"></dl></strike><span id="zl1ld"><i id="zl1ld"><del id="zl1ld"></del></i></span>
<strike id="zl1ld"><dl id="zl1ld"></dl></strike><span id="zl1ld"><dl id="zl1ld"></dl></span>
<strike id="zl1ld"></strike>
<ruby id="zl1ld"></ruby><strike id="zl1ld"></strike>
<span id="zl1ld"><video id="zl1ld"><ruby id="zl1ld"></ruby></video></span>
<span id="zl1ld"><dl id="zl1ld"><del id="zl1ld"></del></dl></span>
<strike id="zl1ld"><video id="zl1ld"></video></strike>
<strike id="zl1ld"><dl id="zl1ld"><del id="zl1ld"></del></dl></strike>
<span id="zl1ld"></span>

APPROACH

To address this, the team at Tredence developed an analytically robust approach with the following specifications:

  • Identified primary drivers among the selected machine variables using ML variable reduction techniques
  • Driver models to understand key influential variables and determine the energy consumption profile
  • Identified the right combination of drivers under the given production constraints – time, quantity and quality
  • Optimization engine to provide the machine settings for a given production plan

KEY BENEFITS

  • The learnings will be used across similar machines to create operational guidelines for reducing energy consumption

RESULTS

  • We were able to achieve a ~5% reduction in energy consumption across major machines

日韩AV电影